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INVARIANT RECORDING OF ELASTICITY THEORY EQUATIONS

UDC 517.9:539.3S. V. Selivanova

An invariant (with respect to rotations) formalization of equations of linear and nonlinear elasticity
theory is proposed. An equation of state (in the form of a convex generating potential) for various
crystallographic systems is written. An algebraic approach is used, which does not require any geo-
metric constructions related to the analysis of symmetry in crystals.
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Introduction. We consider the equations of the nonlinear elasticity theory in the following form [1, 2]:

ρ
∂ui

∂t
− ∂sij

∂ξj
= 0,

∂Hsij

∂t
− ∂ui

∂ξj
= 0. (1)

Here sij are the components of the Piola–Kirchhoff tensor [3], which is an asymmetric stress tensor in Lagrangian
coordinates ξj , ui are the velocities, ρ = ρ(ξ1, ξ2, ξ3) is the density of the medium, H = H(ui, sij) is the equation
of state,

H(ui, sij) = F1(u1, u2, u3) + F (s11, s12, . . . , s33), (2)

and F1 and F are certain convex functions. The function F1 is usually taken in the form F1 = F1(u1, u2, u3) =
ρ(u2

1 + u2
2 + u2

3)/2, and the general form of F is determined below (it is shown that F is a function of 11 invariant
quadratic forms constructed from quantities transformed in accordance with irreducible presentations of the group
of rotations). To describe more complicated processes in an elastic medium, the equation for H can be supplemented
by an explicit functional dependence on parameters characterizing the medium:

H = H(ui, sij , c
ijkl). (3)

Here cijkl are the components of the 4-contravariant tensor, which are interpreted as Hooke’s constants in the linear
elasticity theory. The function H can also depend on the entropy and temperature of the medium.

Introducing the vector of unknowns

v = (u1, u2, u3, s11, s12, s13, s21, s22, s23, s31, s32, s33)t (4)

we can write system (1) as a symmetric hyperbolic system

A
∂v

∂t
+

3∑

j=1

Bj
∂v

∂ξj
= 0, (5)

where A = A(ξ1, ξ2, ξ3, v) = A∗ > 0 and Bj = B∗
j = const. The matrix A contains the second derivatives of the

generating potential (2); positive determinacy of A is a consequence of the convex character of the function H . The
matrix A of size 12 × 12 has the form
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A = A∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ 0 0 0 0 0 0 0 0
0 ρ 0 0 0 0 0 0 0
0 0 ρ 0 0 0 0 0 0
0 0 0
0 0 0
0 0 0 Ã

0 0 0
0 0 0
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ 0 0 0 0 0 0 0 0
0 ρ 0 0 0 0 0 0 0
0 0 ρ 0 0 0 0 0 0
0 0 0
0 0 0
0 0 0 ‖Hsijskl

‖
0 0 0
0 0 0
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

In addition, the relations

∂xi

∂t
= ui, Hsij = cij =

∂xi

∂ξj

are valid [xi = xi(t, ξ1, ξ2, ξ3) are the Eulerian coordinates and cij is the distortion matrix], and the law of conser-
vation of energy is satisfied on solutions of system (1):

∂

∂t
(uiHui + sijHsij − H) =

∂

∂ξj
(uisij).

The objective of the present work is to write the general form of the equations of state (function H) for
a nonlinear elastic medium, based on the tools of the theory of presentations of the group of rotations. As an
example, equations of state for various crystallographic systems are given. It should be noted that the splitting
of the vector of unknowns into vectors transformed in accordance with irreducible presentations of the group of
rotations is known in the linear theory as the Voigt presentation (see, e.g., [4]) and is used in the theory of crystals.
We are not aware, however, of any papers where this presentation in a form similar to that used in the present work
is applied to solve nonlinear problems of the elasticity theory. An invariant (with respect to rotations) recording of
system (1), consistent with this approach, is also proposed in the paper.

1. Preliminary Comments. Let us recall the basic definitions [5] used below. Rotations of a three-
dimensional Euclidean space R

3 form the group

SO(3) = {g ∈ GL(3): gtg = I3, |g| = 1},
where GL(3) is the group of all non-degenerate matrices of dimension 3 × 3 and I3 is the unit matrix. We say
that the presentation TSO(3) of the group SO(3) in the space R

k is defined if each element g ∈ SO(3) is put into
correspondence to a linear transformation Tg : R

k → R
k such that

TI3 = Ik, Tg1·g2 = Tg1 · Tg2 .

The presentation TSO(3) is called irreducible if R
k does not contain nontrivial subspaces that are invariant with

respect to all transformations Tg. The number N (integer or half-integer), such that k = 2N + 1, is called the
weight of the irreducible presentation. Presentations of integer weights only are used in the present paper.

The Kronecker product Tg = T 1
g × T 2

g of presentations T 1
g with a weight N1 and T 2

g with a weight N2 is
called the presentation acting on the matrix B of size (2N1 + 1) × (2N2 + 1) by the rule

TgB = T 1
g B(T 2

g )t.

Theorem 1. If the presentations T 1
g and T 2

g are irreducible, then their product T 1
g × T 2

g can be expanded
into a direct sum of irreducible presentations with the following weights:

N = |N1 − N2|, |N1 − N2| + 1, . . . , N1 + N2. (7)

This expansion is performed with the use of the Clebsch–Gordan matrices Gn
N [N1,N2]

of size (2N1 + 1) ×
(2N2 + 1), n = −N,−N + 1, . . . , N , which form canonical bases of the corresponding subspaces of the matrix space
[6]. These matrices are real, have a rather simple structure (large number of zero elements), are orthonormalized as

tr
{
(Gn

N [N1,N2]
)tGm

N [N1,N2]

}
= δmn,

and possess the property of symmetry:
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Gn
N [N1,N2]

= (−1)N+N1+N2(Gn
N [N2,N1]

)t (8)

(δmn is the Kronecker symbol). The matrices are related to each other by recurrent relations, which make it possible
to construct the algorithm for calculating these matrices explicitly (this algorithm was realized for arbitrary weights
N1 and N2; it was described in detail in [7]).

Let us now consider the Piola–Kirchhoff stress tensor, which is a tensor of the second rank defined in
the canonical base by the matrix T = ‖sij‖i,j=1,2,3. This tensor can be considered as a Kronecker product of
two irreducible presentations of weight 1 of the group of rotations, and it can be expanded into a direct sum of
irreducible presentations of weights 0, 1, and 2:

T =

⎡

⎣
s11 s12 s13

s21 s22 s23

s31 s32 s33

⎤

⎦ = pI3 + K + S.

Here

p = (s11 + s22 + s33)/3 = (1/3) tr T = Σ(0) (9)

is the “pressure” (scalar quantity transformed by the presentation of weight 0), K = −K∗ (three independent
elements of this skew-symmetric matrix form a vector transformed in accordance with an irreducible presentation
of weight 1), S = S∗, and tr S = 0 is the deviator (five independent elements of this symmetric matrix form a vector
transformed in accordance with an irreducible presentation of weight 2).

The matrices K and S are expressed via the Clebsch–Gordan matrices as follows:

K = −K∗ =

⎡

⎣
0 (s12 − s21)/2 (s13 − s31)/2

−(s12 − s21)/2 0 (s23 − s32)/2
−(s13 − s31)/2 −(s23 − s32)/2 0

⎤

⎦ =
1∑

j=−1

ωj Gj
1[1,1]

= ω−1

⎡

⎣
0 0 0
0 0 −1/

√
2

0 1/
√

2 0

⎤

⎦ + ω0

⎡

⎣
0 0 1/

√
2

0 0 0
−1/

√
2 0 0

⎤

⎦ + ω1

⎡

⎣
0 −1/

√
2 0

1/
√

2 0 0
0 0 0

⎤

⎦ .

We denote the corresponding vector transformed with weight 1 as

Σ(1) =

⎛

⎝
ω−1

ω0

ω1

⎞

⎠ =

⎛

⎜⎝
−(s23 − s32)/

√
2

(s13 − s31)/
√

2

−(s12 − s21)/
√

2

⎞

⎟⎠ . (10)

In Sec. 3, we consider a symmetric stress tensor (sij = sji). In this case, we obtain K = −K∗ = 0.
Similarly, the deviator of the stress tensor can be presented as

S =

⎡

⎢⎣
s11 − p (s12 + s21)/2 (s13 + s31)/2

(s12 + s21)/2 s22 − p (s23 + s32)/2

(s13 + s31)/2 (s23 + s32)/2 s33 − p

⎤

⎥⎦ = s−2G
−2
2[1,1] + s−1G

−1
2[1,1] + s0G

0
2[1,1] + s1G

1
2[1,1] + s2G

2
2[1,1].

We denote

Σ(2) =

⎛

⎜⎜⎜⎜⎝

s−2

s−1

s0

s1

s2

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

−(s13 + s31)/
√

2

(s12 + s21)/
√

2√
3 (s22 − p)/

√
2

(s23 + s32)/
√

2

(s11 − s33)/
√

2

⎞

⎟⎟⎟⎟⎟⎟⎠
. (11)

This vector is transformed with weight 2. Let us write the corresponding Clebsch–Gordan matrices. Note, these
matrices are symmetric with the weights used here (N1 = N2 = 1 and N = 2) and skew-symmetric in the case with
N1 = N2 = 1 and N = 1, which corresponds to the property (8):

G−2
2[1,1] =

⎡

⎣
0 0 −1/

√
2

0 0 0
−1/

√
2 0 0

⎤

⎦ , G−1
2[1,1] =

⎡

⎣
0 1/

√
2 0

1/
√

2 0 0
0 0 0

⎤

⎦ ,
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G0
2[1,1] =

⎡

⎣
−1/

√
6 0 0

0 2/
√

6 0
0 0 −1/

√
6

⎤

⎦ ,

G1
2[1,1] =

⎡

⎣
0 0 0
0 0 1/

√
2

0 1/
√

2 0

⎤

⎦ , G2
2[1,1] =

⎡

⎣
1/

√
2 0 0

0 0 0
0 0 −1/

√
2

⎤

⎦ .

In what follows, we use the vectors of the unknowns (9)–(11) [or (9) and (11) for sij = sji in the case of a symmetric
stress tensor T ].

We introduce new notation for velocities:

v(1) =

⎛

⎝
u−1

u0

u1

⎞

⎠ =

⎛

⎝
u1

u2

u3

⎞

⎠ . (12)

2. Structure of the Equation of State. Let us set the general form of the function F (s11, s12, . . . , s33)
involved into the equation of state (2). The generating potential H has to be independent of the coordinate system;
hence, the function F is a function of invariants. To write the full set of invariants depending on the variables
{sij}, we find which invariant quadratic forms (and how many forms) can be composed of the variables (9)–(11).
For this purpose, we write all possible products of weights 0, 1, and 2 (0× 0, 0× 2, 2× 0, 2× 2, 0× 1, 1× 0, 1× 1,
1 × 2, and 2 × 1) and their expansions into irreducible presentations. It should be noted that the expansions for
the cases 0 × 2 and 2 × 0, 0 × 1 and 1 × 0, and 1 × 2 and 2 × 1 coincide by virtue of the commutative character of
the Kronecker product. According to Eq. (7), in the case of expansion of the product of weights N1 and N2 into
irreducible presentations, there arise

(2|N1 − N2| + 1) + . . . + [2(N1 + N2) + 1] = (2N1 + 1)(2N2 + 1) (13)

parameters w
(N)
n transformed in accordance with irreducible presentations with the corresponding weights N .

Let us write the formula of expansion of the Kronecker product of the vectors p and q transformed in
accordance with irreducible presentations with the weights N1 and N2 into irreducible presentations [8]:

p(N1) × q(N2) =
N1+N2∑

N=|N1−N2|

( N∑

n=−N

w(N)
n Gn

N [N1,N2]

)
.

The invariant quadratic forms (transformed in accordance with the presentation of the zero weight) composed of
these vectors are written in the following manner (the invariance follows from the orthogonality of the presentations
considered):

I(N) =
N∑

n=−N

w(N)
n ([p(N1)]tGn

N [N1,N2]
, q(N2)),

N = |N1 − N2|, |N1 − N2| + 1, . . . , N1 + N2.

(14)

Thus, we can determine the number of parameters of the elastic medium and write all possible invariant
quadratic forms (through these forms, we can express the energy of the elastic medium, i.e., the generating poten-
tial H). In the case of the linear elasticity theory, the parameters w

(N)
n (corresponding to weights 0 and 2) can be

interpreted as constants in Hooke’s law for an elastic solid possessing some types of symmetry (see Sec. 3).
Thus, according to Eq. (13), we have:
1) 0 × 0 =⇒ 1 parameter;
2) 0 × 2 =⇒ 5 parameters;
3) 2 × 0 =⇒ 5 parameters;
4) 2 × 2 =⇒ 1 + 3 + 5 + 7 + 9 = 25 parameters.
Hence, there are 36 parameters for media with a symmetric stress tensor T = T ∗.
In the general case, there is also weight 1 and 45 more parameters:
5) 0 × 1 =⇒ 3 parameters;
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6) 1 × 0 =⇒ 3 parameters;
7) 1 × 1 =⇒ 1 + 3 + 5 parameters;
8) 1 × 2 =⇒ 3 + 5 + 7 parameters;
9) 2 × 1 =⇒ 3 + 5 + 7 parameters.
Hence, there are 36 + 45 = 81 parameters.
We write the corresponding quadratic forms, using Eq. (14). [Note, of interest for the present work are

only different quadratic forms with symmetric matrices forming the linear part of the matrix Ã = Ã∗ from (6).]
Therefore, there are only 45 constants left out of 81 (in the case of a symmetric stress tensor, 21 out of 36).

1. For N1 = 0, N2 = 0, and N = 0, we have G0
0[0,0] = [1], and the corresponding quadratic form is

I(1) = c1G
0
0[0,0]p

2.

2. For N1 = 0, N2 = 2, and N = 2, we have G0
2[0,2] = [0 0 1 0 0], G−1

2[0,2] = [0 1 0 0 0], G1
2[0,2] = [0 0 0 1 0],

G−2
2[0,2] = [1 0 0 0 0], and G2

2[0,2] = [0 0 0 0 1], and the quadratic form is

I(2) =
2∑

j=−2

ajG
j
2[0,2]Σ

(2)p =
2∑

j=−2

ajΣ
(2)
j p

(aj are five arbitrary parameters).
3. For N1 = 2, N2 = 0, and N = 2, the quadratic form is the same as that in case 2:

I(2) =
2∑

j=−2

aj(G
j
2[2,0]p, Σ(2)).

4. For N1 = 2 and N2 = 2, there are several options.
4.1. For N = 0,

I(3) = c2(G0
0[2,2]Σ

(2), Σ(2)) = c̃2(Σ(2), Σ(2))

(G0[2,2] is a diagonal matrix).

4.2. For N = 1, the quadratic form is
1∑

j=−1

ãj(G
j
1[2,2]Σ

(2), Σ(2)), where

G−1
1[2,2] =

⎡

⎢⎢⎢⎢⎣

0 −1/
√

10 0 0 0
1/

√
10 0 0 0 0

0 0 0 −√
3/
√

10 0
0 0

√
3/

√
10 0 1/

√
10

0 0 0 −1/
√

10 0

⎤

⎥⎥⎥⎥⎦
,

G1
1[2,2] =

⎡

⎢⎢⎢⎢⎣

0 0 0 1/
√

10 0
0 0 −√

3/
√

10 0 1/
√

10
0

√
3/

√
10 0 0 0

−1/
√

10 0 0 0 0
0 −1/

√
10 0 0 0

⎤

⎥⎥⎥⎥⎦
,

G0
1[2,2] =

⎡

⎢⎢⎢⎢⎣

0 0 0 0
√

2/
√

5
0 0 0 1/

√
10 0

0 0 0 0 0
0 −1/

√
10 0 0 0

−√
2/

√
5 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

Note, by virtue of property (8), these matrices are skew-symmetric, and this case is not considered further.
4.3. For N = 2, we have

I(4) =
2∑

j=−2

bj(G
j
2[2,2]Σ

(2), Σ(2)),
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where

G−2
2[2,2] =

⎡

⎢⎢⎢⎢⎣

0 0 −√
2/

√
7 0 0

0 0 0 −√
3/(

√
2
√

7 ) 0
−√

2/
√

7 0 0 0 0
0 −√

3/(
√

2
√

7 ) 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥⎦
,

G2
2[2,2] =

⎡

⎢⎢⎢⎢⎣

0 0 0 0 0
0

√
3/(

√
2
√

7 ) 0 0 0
0 0 0 0 −√

2/
√

7
0 0 0 −√

3/(
√

2
√

7 ) 0
0 0 −√

2/
√

7 0 0

⎤

⎥⎥⎥⎥⎦
,

G−1
2[2,2] =

⎡

⎢⎢⎢⎢⎣

0 0 0 −√
3/(

√
2
√

7 ) 0
0 0 1/(

√
2
√

7 ) 0
√

3/(
√

2
√

7 )
0 1/(

√
2
√

7 ) 0 0 0
−√

3/(
√

2
√

7 ) 0 0 0 0
0

√
3/(

√
2
√

7 ) 0 0 0

⎤

⎥⎥⎥⎥⎦
,

G1
2[2,2] =

⎡

⎢⎢⎢⎢⎣

0 −√
3/(

√
2
√

7 ) 0 0 0
−√

3/(
√

2
√

7 ) 0 0 0 0
0 0 0 1/(

√
2
√

7 ) 0
0 0 1/(

√
2
√

7 ) 0 −√
3/(

√
2
√

7 )
0 0 0 −√

3/(
√

2
√

7 ) 0

⎤

⎥⎥⎥⎥⎦
,

G0
2[2,2] =

⎡

⎢⎢⎢⎢⎣

−√
2/

√
7 0 0 0 0

0 1/(
√

2
√

7 ) 0 0 0
0 0

√
2/
√

7 0 0
0 0 0 1/(

√
2
√

7 ) 0
0 0 0 0 −√

2/
√

7

⎤

⎥⎥⎥⎥⎦
.

4.4. For N = 3, we obtain the quadratic form
3∑

j=−3

b̃j(G
j
3[2,2]Σ

(2), Σ(2)). The corresponding matrices are also

skew-symmetric (in what follows, we do not write them in explicit form).
4.5. For N = 4, we have

I(5) =
4∑

j=−4

dj(G
j
4[2,2]Σ

(2), Σ(2)).

Thus, to enumerate all paired different symmetric quadratic forms composed by the above-indicated method
for a symmetric stress tensor (with weights 0 and 2 only), we need to eliminate cases 3, 4.2, and 4.4 from the
above-given cases; as a result, there remain 36− 5− 3− 7 = 21 parameters. The remaining cases 1, 2, 4.1, 4.3, and
4.5 correspond to five invariants I(1), I(2), . . . , I(5), which may affect the energy.

Let us continue considerations for the general case by adding weight 1.
5. For N1 = 0, N2 = 1, and N = 1, we have

I(6) =
1∑

j=−1

αjG
j
1[0,1]Σ

(1)p.

6. For N1 = 1, N2 = 0, and N = 1, the invariant quadratic form is the same as that in case 5, because
Gj

1[0,1] = (Gj
1[1,0])

t. Therefore, case 6 is not taken into account, and the number of parameters decreases by 3.
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7. For N1 = N2 = 1, several options are possible.
7.1. For N = 0, we have

I(7) = c3(G0
0[1,1]Σ

(1), Σ(1)) = c̃3(Σ(1), Σ(1)).

7.2. For N = 1, we obtain the quadratic form
1∑

j=−1

β̃j(G
j
1[1,1]Σ

(1), Σ(1)), and the matrices Gj
1[1,1] are skew-

symmetric.
7.3. For N = 2, we have

I(8) =
2∑

j=−2

βj(G
j
2[1,1]Σ

(1), Σ(1)).

8. For N1 = 2 and N2 = 1, several options are possible.
8.1. For N = 1, we have

I(9) =
1∑

j=−1

fj(G
j
1[2,1]Σ

(1), Σ(2)).

8.2. For N = 2, we have

I(10) =
2∑

j=−2

gj(G
j
2[2,1]Σ

(1), Σ(2)).

8.3. For N = 3, we have

I(11) =
3∑

j=−3

hj(G
j
3[2,1]Σ

(1), Σ(2)).

9. For N1 = 1 and N2 = 2, the quadratic forms coincide with the quadratic forms in case 8, i.e., the
corresponding 3 + 5 + 7 = 15 constants are ignored.

Thus, ignoring the “extra” cases 6, 7.1, and 9, we obtain 45− 3 − 3 − 15 = 24 additional parameters. With
allowance for cases 1–4, we have 21 + 24 = 45 independent parameters, which may affect the generating potential
(2). There are six more invariants if we take into account cases 5, 7.1, 7.3, and 8.1–8.3. Thus, the sought function
F in the expression for the energy of the nonlinear elastic medium can depend on 11 invariants determined with
accuracy to an arbitrary constant factor (with allowance for this fact, we admit some arbitrariness in the notation
of parameters). The equation of state has the form

H = ρ(u2
−1 + u2

0 + u2
1)/2 + F (I(1), I(2), I(3), . . . , I(11)). (15)

The parameters

c1, c2, aj (j = −2, . . . , 2), bj (j = −2, . . . , 2), dj (j = −4, . . . , 4),

c3, βj (j = −2, . . . , 2), αj (j = −1, . . . , 1), fj (j = −1, . . . , 1), (16)

gj (j = −2, . . . , 2), hj (j = −3, . . . , 3)

involved into invariants I(1)–I(11) characterize the medium and can depend on spatial variables.
Note, for an isotropic case, there remain only three invariants corresponding to the zero weight:

I(1) = c1p
2, I(3) = c2(Σ(2), Σ(2)), I(7) = c3(Σ(1), Σ(1)). (17)

For Eqs. (1) to be well-posed, the function H has to be convex over the initial variables (4).
The necessary and sufficient conditions of convexity of the function H [imposed onto parameters (16)] were

studied in [1] for a function of a somewhat different type. References to papers dealing with the positive determinacy
of the energy matrix for the linear case in standard variables can be found, e.g., in [9].

As predicted by Eq. (3), let the function H explicitly depend on the medium parameters cijkl ; the set of
these parameters is divided into groups in accordance with Eq. (16). Using this splitting and Eqs. (14) and (8), we
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can construct invariant quadratic forms from the parameters cijkl, which may affect the convex generating potential
H , by analogy with construction of the quadratic forms I(1)–I(11). For instance, three invariants can be composed
from the vectors a = (a−2, a−1, . . . , a2) and b = (b−2, b−1, . . . , b2):

N∑

n=−N

ϕn
N (Gn

N [2,2]a, b), N = 0, 2, 4

(ϕn
N are some additional parameters characterizing the medium).

3. Equation of State for a Crystalline Medium. Let us consider a linear elastic medium with a
symmetric stress tensor whose components are re-denoted by T = ‖σij‖ = ‖σji‖ = T ∗. The vectors of the
unknowns (9) and (11), which are transformed with weights 0 and 2, respectively, are written as follows:

u(0) = p =
σ11 + σ22 + σ33

3
, u(2) =

⎛

⎜⎜⎜⎜⎝

σ−2

σ−1

σ0

σ1

σ2

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

−√
2σ13√

2σ12√
6 (σ22 − p)/2√

2σ23

(σ11 − σ33)/
√

2

⎞

⎟⎟⎟⎟⎠
. (18)

Now we do not have the vector transformed with weight 1 and corresponding to the skew-symmetric part of T . The
expression for the internal energy of the elastic solid can now be written as

E = (1/2)εijσij = cijklσklσij ,

where εij is the tensor of small strains and cijkl is the tensor of rank 4 (Hooke’s parameters) consisting in the
general case of 81 constants. By virtue of the symmetry of the stress tensor σij = σji, we obtain 36 constants;
in addition, there is also the symmetry cijkl = cklij ; finally, we obtain 21 different constants. The same result is
obtained with the use of irreducible presentations of the group of rotations.

In addition, it was established in Sec. 2 that

E = E(I(1), I(2), . . . , I(5)) = I(1) + I(2) + . . . + I(5)

(in this case, as the energy is a quadratic form, it is a linear combination of invariants; as the invariants are
determined with accuracy to an arbitrary constant factor, the expression for the energy can be written as a sum
of these invariants). Let us write the matrices of the quadratic forms composing the invariants I(1)–I(5) by passing
from variables (18) to the “classical” variables:

u = (σ11, σ22, σ33, σ13, σ12, σ23)t.

Let us recall that there are two invariants of the power, equal to or smaller than two, with respect to σij for
an isotropic elastic solid (i.e., if the solid is invariant with respect to all rotations of the space):

J(1) = σii, J(2) = σijσij .

From these invariants, we can compose a quadratic form containing two different parameters of the medium (out
of possible 21 parameters) of the form

E0 = c1(λ, μ)J2
(1) + c2(λ, μ)J(2) = (A0u, u)

(λ and μ are the Lamé constants). The same quadratic form can be obtained from cases 1 and 4.1 for the zero
weight (N = 0) considered in Sec. 2:

E0 = c̃1G
0
0[0,0]p

2 + c̃2(G0
0[2,2]u

(2), u(2)) = I(1) + I(2) = (C0u, u).

Here

C0 = C∗
0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

c1 + c2 c1 c1 0 0 0
c1 + c2 c1 0 0 0

c1 + c2 0 0 0
c2 0 0

sym c2 0
c2

⎤

⎥⎥⎥⎥⎥⎥⎦
, (19)

and the term E0 always enters the expression for the energy E.
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We write the quadratic form for case 2:

I(3) =
2∑

j=−2

ajG
j
2[0,2]u

(2)p = (C1u, u).

Here

C1 = C∗
1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−a0/(2
√

3 ) + a2/2 a0/(2
√

3 ) + a2/2 −a0/
√

3 −a−2 a−1 a1

a0/
√

3 a0/(2
√

3 ) − a2/2 −a−2 a−1 a1

−a0/(2
√

3 ) − a2/2 −a−2 a−1 a1

0 0 0
sym 0 0

0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

For case 4.3, we have

I(4) =
2∑

j=−2

bj(G
j
2[2,2]u

(2), u(2)) = (C2u, u),

where

C2 = C∗
2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b0

3
+

b2√
3

−2b0

3
− 2b2√

3
b0

3
−2b−2√

3
2b−1√

3
−4b1√

3
2b0

3
−2b0

3
+

2b2√
3

4b−2√
3

2b−1√
3

2b1√
3

−b0

3
− b2√

3
−2b−2√

3
−4b−1√

3
2b1√

3

−2b0 2
√

3 b1 2
√

3 b−1

sym b0 +
√

3 b2 −2
√

3 b−2

b0 −
√

3 b2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(the matrix also contains five independent parameters chosen with accuracy to a common constant factor).
For case 4.5, we have

I(5) =
4∑

j=−4

dj(G
j
4[2,2]u

(2), u(2)) = (C3u, u).

We will not write the matrix C3 because it is too cumbersome. It contains nine elastic constants dj (j = −4, . . . , 4).
If there are no additional rotational symmetries (except for the identical transformation) for the elastic solid,

the expression for the energy includes all four terms given above,

E = E0 + I(3) + I(4) + I(5) = (Cu, u) (20)

and contains 21 independent parameters. Here C = C0 + C1 + C2 + C3.
Thus, the parameters obtained (a total of 21 parameters) can be divided into groups in the following manner:
1) c1 and c2 are two quantities invariant with respect to all rotations and transformed with weight 0;
2) a = (a−2, a−1, a0, a1, a2) is a five-dimensional vector transformed with weight 2;
3) b = (b−2, b−1, b0, b1, b2) is a five-dimensional vector transformed with weight 2;
4) d = (d−4, d−3, d−2, d−1, d0, d1, d2, d3, d4) is a nine-dimensional vector transformed with weight 4.
These parameters are contained in the matrix C of the quadratic form of energy (20). Let us indicate the

relations between these parameters in the case of symmetry in crystals. For this purpose, we use the available
results for seven crystallographic systems (syngonies) given, for instance, in [10]. Equating to zero those elements
of the matrix C that have zero values according to these results, we obtain an individual (possibly, overdetermined)
system of linear equations for each case; the solution of the system is expected to yield the sought relations. Let
us introduce the notations for the transformations responsible for rotation by 360◦/n around the x3 axis (Rn),
half-rotation (i.e., rotation by 180◦) around the x2 axis (L2), half-rotation around the bisector x1 = x2, x3 = 0 (L),
and rotation around the diagonal of the cube x1 = x2 = x3 (S).
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Let us consider each of seven crystallographic systems.
1. Triclinic system {I}. The corresponding group of transformations consists of the identical transformation

only, i.e., there are 21 independent parameters, i.e., E = (Cu, u), where C is the full matrix.
2. Monoclinic system 〈R2〉 generated by rotation by 180◦ around one axis. For this system, we obtain a

system of eight linear equations (eight unknowns), which yields

a−2 = b−2 = d−4 = d−2 = a1 = b1 = d1 = d3 = 0.

Thus, we have 21 − 8 = 13 independent parameters located in the above-described vectors as follows:

c1, c2, (0, a−1, a0, 0, a2), (0, b−1, b0, 0, b2), (0, d−3, 0, d−1, d0, 0, d2, 0, d4).

3. Rhombic system 〈R2, L2〉. To relations valid in case 2, we need to add the relations a−1 = b−2 = d−1 =
d−3 = 0, i.e., we have 13 − 4 = 9 independent parameters:

c1, c2, (0, 0, a0, 0, a2), (0, 0, b0, 0, b2), (0, 0, 0, 0, d0, 0, d2, 0, d4).

4. Trigonal system 〈R3〉, 〈R3, L2〉. In this case, we have 14 equations with 19 unknowns. Solving this
overdetermined system, we obtain 21 − 14 = 7 independent parameters c1, c2, a0, b−2, b0, b1, and d0:

c1, c2, (0, 0, a0, 0,
√

3 a0), (b−2, 0, b0, b1,
√

3 b0),

(−(
√

7/
√

3 )b−2, 0,−(5/
√

3 )b−2, 0, d0,
√

2
√

3 b1, (2
√

5/3)d0, (
√

7
√

2/
√

3)b1, (
√

5
√

7/3)d0).

5. Tetragonal system 〈R4〉, 〈R4, L2〉. In this case, we also obtain seven independent parameters c1, c2, a0,
b0, d−1, d0, and d2 located as follows:

c1, c2, (0, 0, a0, 0,
√

3 a0), (0, 0, b0, 0,
√

3 b0),

(0, (1/
√

7)d−1, 0, d−1, d0, 0, d2, 0,−(
√

5/
√

7 )d0 − (2/
√

7 )d2).

6. Hexagonal system 〈R6〉, 〈R6, L2〉. In this case, we have five independent parameters c1, c2, a0, b0, and d0

located as follows:

c1, c2, (0, 0, a0, 0,
√

3 a0), (0, 0, b0, 0,
√

3 b0), (0, 0, 0, 0, d0, 0, (2
√

5/3)d0, 0,−(
√

5
√

7/3)d0).

7. Cubic system 〈S, R2〉, 〈S, L〉. In this case, we obtain a = b = 0 and three independent parameters located
as follows:

c1, c2, d = (0, 0, 0, 0, d0, 0, 0, 0,−(
√

5/
√

7)d0).

Thus, for each crystallographic system, we can write a quadratic form for the equation of state in explicit
form in terms of irreducible presentations of the group of rotations. Note that the approach proposed for con-
structing the equation of state is purely algebraic, in contract to the commonly used geometric approach. The
geometric interpretation of relations for Hooke’s parameters described in this section (for instance, their relation
with parameters defining the corresponding crystalline lattice [11]) is an independent problem.

4. Invariant Recording of the Equations. In this section, we use the statements [5, 6, 8] about the
general form of the system of the first-order partial differential equations, which is invariant with respect to rotations.

Let us consider the equations of the linear elasticity theory in the form

ρ
∂ui

∂t
− ∂σij

∂xj
= 0,

∂εij

∂t
− 1

2

( ∂ui

∂xj
+

∂uj

∂xi

)
= 0,

where εij = εji and σij = σji (i = 1, 2, 3; j = 1, 2, 3). From Hooke’s law εij = cijklσkl, we obtain

ρ
∂ui

∂t
− ∂σij

∂xi
= 0,

cijkl ∂σkl

∂t
− 1

2

( ∂ui

∂xj
+

∂uj

∂xi

)
= 0.

(21)
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By introducing the vector of unknowns ṽ = (u1, u2, u3, σ11, σ22, σ33, σ12, σ13, σ23), we can write these equations in
the form of a symmetric hyperbolic system similar to (5), where the matrix A = A(x1, x2, x3) = A∗ > 0 of size 9×9
depends on the medium parameters, which can have different values at each point of the medium.

In the isotropic case (if the medium is invariant with respect to all rotations of the coordinate system), the
matrix Ã of size 6× 6 from (6) has the form (19). The matrix Ã contains two parameters (c1 and c2) characterizing
the medium properties and expressed via the Lamé parameters λ and μ: c1 = −λ/[2μ(3λ + 2μ)] and c2 = 1/μ.
In the anisotropic case, there appear additional parameters. Thus, if there are no additional symmetries in the
medium, there are 21 independent parameters (the maximum number), and the matrix Ã coincides with the filled
matrix C in (20). Moreover, certain intermediate cases are possible (various crystallographic systems considered in
Sec. 3).

In variables (12) and (18), Eqs. (21) for an isotropic medium are written as

A1
∂

∂t
v(1) + Δ−u(2) + Δ+u(0) = 0,

A0
∂

∂t
u(0) + Δ−v(1) = 0, (22)

A2
∂

∂t
u(2) + Δ+v(1) = 0.

Here

Δ−u(L) = c−(L)
1∑

i=−1

∂

∂xi
Gi

1[L−1,L]u
(L), Δ+u(L) = c+(L)

1∑

i=−1

∂

∂xi
Gi

1[L+1,L]u
(L)

are the matrix differential operators containing the Clebsch–Gordan matrices, which are invariant with respect to
rotations. The first operator decreases the weight of the vector transformed in accordance with the irreducible
presentation of the weight L of the group of rotations by unity (it is an analog of the div operator), and the second
operator increases the weight of this vector by unity (it is an analog of the grad operator):

c−(1) = c+(0) = −1, c+(1) =
√

2
√

5√
3

, c−(2) =
2
√

5√
3

=
√

2c+(1), A1 =

⎛

⎝
ρ

ρ

ρ

⎞

⎠ .

For an isotropic medium, we have

A0 = ĉ1G
0
0[0,0] = ĉ1 =

1
3λ + 2μ

, A2 = ĉ2G
0
0[2,2] =

⎛

⎜⎜⎜⎜⎝

1/μ

1/μ

1/μ

1/μ

1/μ

⎞

⎟⎟⎟⎟⎠
.

In the case of an anisotropic medium, system (22) is slightly more complicated: the first subsystem (for
weight 1) remains unchanged, and two other subsystems are united:

Â
∂ũ

∂t
+

(
Δ−v(1) 0

0 Δ+v(1)

)
= 0. (23)

Here ũ = (u(0), u(2))t is the vector consisting of six components (18),

Â =
(

A0 0
0 A2

)
+

⎛

⎜⎜⎜⎜⎝

0
2∑

j=−2

ajG
j
2[0,2]

2∑

j=−2

ajG
j
2[2,0]

2∑

j=−2

bjG
j
2[2,2] +

4∑

j=−4

djG
j
4[2,2]

⎞

⎟⎟⎟⎟⎠
.

Hooke’s parameters involved into the matrix Â at the derivative ∂/∂t are divided into groups. If the crystals possess
certain kinds of symmetry, these parameters are related by additional formulas given in Sec. 3. As an example, let
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us write the matrix Â for the case with cubic symmetry. In such variables, the matrix Â is a diagonal matrix, which
facilitates calculation of the characteristics of the equations considered:

Â =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 0 0 0 0 0

0
1√
5

c2 − 6
√

2√
5
√

7
d0 0 0 0 0

0 0
1√
5

c2 − 6
√

2√
5
√

7
d0 0 0 0

0 0 0
1√
5

c2 +
9
√

2√
5
√

7
d0 0 0

0 0 0 0
1√
5

c2 − 6
√

2√
5
√

7
d0 0

0 0 0 0 0
1√
5

c2 +
9
√

2√
5
√

7
d0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Generalizing the invariant recording proposed here to the nonlinear case, we can assume that system (1) in
variables (9)–(12) is written as

ρ
∂

∂t
v(1) + Δ−Σ(2) + Δ+Σ(0) + Δ0Σ(1) = 0,

Â
∂

∂t

⎛

⎝
Σ(0)

Σ(1)

Σ(2)

⎞

⎠ +

⎛

⎝
Δ−v(1) 0 0

0 Δ0v
(1) 0

0 0 Δ+v(1)

⎞

⎠ = 0,

(24)

where we have the following relations for each vector u(L) transformed in accordance with the weight L:

Δ−u(L) = c−(L)
1∑

i=−1

∂

∂ξi
Gi

1[L−1,L]u
(L), Δ+u(L) = c+(L)

1∑

i=−1

∂

∂ξi
Gi

1[L+1,L]u
(L),

Δ0u
(L) = c0(L)

1∑

i=−1

∂

∂ξi
Gi

1[L,L]u
(L).

The latter operator retains the weight of the vector and is a multidimensional analog of the rot operator. This
operator appears in the system recording owing to addition of the skew-symmetric part of the stress tensor. The
matrix at the derivative ∂/∂t (of size 9 × 9) has the form

Â =

⎛

⎜⎝

Hpp ‖H
pΣ

(1)
i
‖i=−1,0,1 ‖H

pΣ
(2)
k

‖k=−2,...,2

‖H
Σ

(1)
i p

‖i=−1,0,1 ‖H
Σ

(1)
i Σ

(1)
j

‖i,j=−1,0,1 ‖H
Σ

(1)
i Σ

(2)
k

‖i=−1,0,1,k=−2,...,2

‖H
Σ

(2)
k p

‖k=−2,...,2 ‖H
Σ

(2)
k Σ

(1)
i

‖i=−1,0,1,k=−2,...,2 ‖H
Σ

(2)
k Σ

(2)
l

‖k,l=−2,...,2

⎞

⎟⎠ ,

Â = Â(ξ−1, ξ0, ξ1, v
(1), p,Σ(1),Σ(2)) = Â∗ > 0.

Here H is the generating potential (15) depending on parameters (16).
In the linear case, the invariants I(1)–I(5) for crystallographic systems are written with allowance for results

described in Sec. 3. Other invariants have to be considered separately. It can only be noted at the moment that
only invariants (17) are present in the isotropic case.

The case most often encountered in practice is a nonlinear dependence of the generating potential on pressure
H(p), whereas the dependences of H on the skew-symmetric part of the stress tensor Σ(1) and deviator Σ(2) can
be assumed to be linear:

H = F1(v(1)) + H0(c1p
2) + I(2) + I(6).

In this case, system (24) acquires the form

ρ
∂

∂t
v(1) + Δ−Σ(2) + Δ+Σ(0) + Δ0Σ(1) = 0,
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Hpp
∂

∂t
Σ(0) + Δ−v(1) = 0,

c3
∂

∂t
Σ(1) + Δ0v

(1) = 0,

c2
∂

∂t
Σ(2) + Δ+v(1) = 0

with a diagonal matrix at the derivative ∂/∂t, whose characteristics can be readily calculated with allowance for
its invariance with respect to rotations. This is a diagonal matrix for crystals possessing cubic symmetry as well.
The convenience of calculating the characteristics in the proposed system recording makes it possible to use, for
instance, Godunov’s difference schemes for the numerical solution of the systems of equations considered.

Conclusions. Advantages of the systematization proposed in the present work are the consideration of
the most general case with an asymmetric stress tensor and avoiding the assumption of low strains. In addition,
owing to splitting of the matrix at the derivative ∂/∂t into blocks of smaller dimension, the recording of the system
of equations proposed facilitates calculation of characteristics and, hence, construction of numerical methods for
solving the differential equations considered. As a whole, such an approach is not absolutely new (at least, for the
linear elasticity theory), but its description differs from that commonly used.

Using the remark made at the end of Sec. 2 of this paper, one can apply the approach proposed to a more
complicated system of equations of the nonlinear elasticity theory involving dissipative processes, which can lead to
relaxation of the medium parameters and to changes in the crystalline structure of the material [such processes are
modeled by adding a special right side to system (1)]. It is also of interest to compare the details of the approach
used in the present work with available approaches to constructing invariants for the linear case (see [9, 12]), to
study the conditions of convexity of the generating potential (15), i.e., well-posedness of Eqs. (1), to study the
structure of the characteristics of Eqs. (1) written in the form (24), to interpret this structure in group terms,
and to establish a relation between the construction of this structure and the construction usually presented in the
crystal theory [13, 14].

The approach proposed can be useful for studying the equations of the nonlinear elasticity theory and for
solving particular physical problems.

The author is grateful to S. K. Godunov for formulating the problem and permanent attention to this work
and to R. M. Garipov and S. P. Kiselev for useful discussions of the material described in the paper.
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